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The temperature-salinity relationship of the
mixed layer

R. Ferrari

Woods Hole Oceanographic Institution, Woods Hole, Massachusetts - USA

F. Paparella, D.L. Rudnick and W.R. Young

Scripps Institution of Oceanography, La Jolla, California - USA

Abstract. The surface mixed layer of the ocean is often characterized
by density compensation between the horizontal temperature and salinity
gradients. In this contribution we present a combination of theoretical
arguments and numerical simulations to investigate how compensation might
emerge as a result of processes at work within the mixed layer. The dynamics
of the mixed layer are investigated through a simple model. The model
consists of a pair of coupled advection-diffusion equations for heat and salt.
The coupling arises through a nonlinear diffusion operator proportional to the
buoyancy gradient, which parameterizes the combined effect of slumping and
mixing of small-scale horizontal buoyancy gradients. Numerical solutions of
the mixed layer model show that the nonlinear diffusion creates compensation
between the temperature and salinity gradients, while the stirring field
maintains alignment between the two gradients. The results of this work
suggest a new parameterization of the horizontal fluxes of heat and salt for
numerical models of the mixed layer.

1. Introduction dynamics is required to account for the observed com-
pensation. Young (1994) and Ferrari and Young (1997)

Observations show that the thermohaline structure propose a more satisfactory explanation that relies on
of the surface mixed layer (ML) of the ocean is largely regulating mechanisms at work in the ML. These theo-
compensated. In other words, temperature and salin- retical arguments suggest that compensation is the re-
ity fronts coincide so that the resulting density contrasts suit of the preferential diffusion of horizontal density
are small relative to the individual contributions of heat gradients which occurs because of the combined action
and salt. This phenomenon has been known for some of unbalanced motions and vertical mixing.
time for certain fronts at scales of a few tens to one The physical explanation of the theory of Young and
hundred kilometers (Roden, 1975; Rudnick and Luyten, collaborators is as follows. Horizontal gradients of tem-
1996). Recent high-resolution observations have shown perature and salinity can arise in the ML in response
that compensation exists down to horizontal scales of to non homogeneous atmospheric forcing and entrain-
tens of meters in the North Pacific (Rudnick and Fer- ment of thermocline waters. At some locations temper-
rari, 1999; Ferrari and Rudnick, 2000) and throughout ature and salinity will compensate each other exactly,
the global ocean on scales of kilometers (Rudnick and whereas in other locations temperature and salinity will
Martin, 2001). An example from a horizontal tow in the create strong horizontal density gradients. Much of the
ML of the Subtropical North Pacific is given in Figure 1. ML will lie between these two extremes. The strong
Notice how almost all fluctuations of temperature are density gradients slump under the action of gravity and
mirrored in salinity so that density gradients are mini- tend to restratify the ML. Vertical mixing eventually ar-
mized. rests this unbalanced motion by remixing the ML. This

One explanation of these observations is that atmo- mechanism is essentially thermohaline shear dispersion,
spheric forcing conspires to create and juxtapose water where the shear is driven by the horizontal density gra-
masses with compensating properties. However the ra- dient, and the vertical mixing results from the variety
tio of heat to freshwater density fluxes is variable in of processes that mix the ML. On the other hand, com-
large scale maps (Schmitt et al., 1989) and in time se- pensated fronts are balanced and therefore do not expe-
ries at a point (Weller et al., 1985), so internal ocean rience shear dispersion. The net result is that density
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96 FERRARI ET AL.

fronts are diffused, while compensated fronts persist. together with appropriate boundary conditions. The

The preferential diffusion of horizontal density gradi- operator on the RHS represents the diffusion of tracer
ents can be represented with mixing parameterizations fluctuations by molecular motions and n is the molec-
in which the transport of heat and salt depends nonlin- ular diffusivity. The equation in (1) is appropriate to
early on the density gradient, e.g., with diffusivities pro- describe the transport of 0 at scales from a few millime-
portional to some power of the density gradient (Young, ters to thousands of kilometers. However, the resulting
1994; Ferrari and Young, 1997). In this paper we ex- description is overly complicated. Our goal is to derive
amine the establishment of thermohaline compensation a simpler model that describes transports in the ML at
by implementing these nonlinear diffusive parameteri- large scales and long times by averaging the equation
zations in a simple model of the ML. Numerical solu- in (1) over short times and short scales. The key step
tions show that the thermohaline structure of the ML in the analysis is to find appropriate scales for the av-
is generated by a balance between the mesoscale strain- eraging so that we can derive a closed equation for the
ing field, that acts to increase temperature and salinity averaged concentration 0 by folding all the details of
gradients, and the nonlinear diffusion, that arrests the the small scale motions in a suitable operator V that
formation of density gradients but not of compensated depends on averaged variables, i.e.,
gradients. In agreement with observations, temperature
and salinity gradients tend to be aligned, because both at0 + ft. V0 = D(,i, 0), (2)

heat and salt are advected by the same straining field, where fi is the averaged velocity field.
and compensated. Some very popular ML models, referred to as bulk

The mechanism of compensation described above im- models (e.g. Kraus and Turner, 1967), choose to aver-
plicate vertically sheared currents within the ML and it age over the depth H of the ML and the characteristic
is not included in numerical models with bulk MLs. In time of vertical mixing iV. This choice is quite natural,
the last section of the paper we show how to simplify because the turbulent fluxes that homogenize vertically
the nonlinear diffusive parameterization so that it can the ML are due to processes such as convection and
be implemented in ocean circulation models to improve Langmuir cells, characterized by coherent eddies which
the representation of ML thermohaline dynamics. span the depth H and have an aspect ratio close to one.

The paper is organized as follows. In section 2, we In these models, the operator V parameterizes all the
revisit the arguments of Young and collaborators in the processes that maintain the ML well mixed in the ver-
context of the parameterization of diapycnal fluxes in tical. A problem arises when bulk ML are implemented
the ML. In section 3, we describe numerical simulations in circulation models that resolve horizontal scales that
used to test the nonlinear diffusive parameterization of are orders of magnitude larger than H. In this case
heat and salt transports in the ML. In section 4, we one has to average the tracer equation over H in the
suggest a simplified version of the nonlinear diffusive vertical, but over a scale L > H in the horizontal. A
parameterization to be implemented in bulk ML omod- typical solution is to parameterize in series the motions
els. Finally, conclusions are offered in section 5. on scales shorter than H and those on scales between

H and LV. That is, the same operator E) is retained

2. Horizontal transport of heat and salt to describe the fluxes that mix vertically the ML, but
in the mixed layer a lateral effective eddy diffusivity is introduced to pa-

rameterize the fluxes at larger scales. Here we show
that unbalanced horizontal motions with characteristic

Let us consider the dispersion of some tracer of con- scal b et hoan matinp with tertuu
centration 0 in the ML. We model the ML as a vig- scales between H and L act in parallel with the turbu-

centatin 9in he L. e moel he L a a ig- lent motions on scales shorter than H. Therefore it is
orously mixed, shallow layer, characterized by a small

aspect ratio, i.e., with a depth H much less than the necessary to modify the operator V and parameterize
all unresolved motions together.

horizontal scale. The main point here is that there are

two very different time scales: a fast time scale -'v over Let us average equation (1) over the depth H in the

which the layer is mixed vertically over the depth H vertical, over a scale L > H in the horizontal and over
and a longer time scale rH associated with horizontal a time riH > rv. The scales L and i-H have only lower

transports. bounds, but are not specified for the moment. We ob-

The mathematical model for the transport of a tracer tai the Reynolds' averaged equation,

9 stirred by an incompressible velocity field u is the 0to + f3-VH9 = -VH. U'7-0 + KVHO + F. (3)
familiar advection-diffusion equation,

'See Garrett (2001) for a discussion of parameterizations of
Ot• + u. V = KV20, (1) unresolved motions in parallel and in series.
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Figure 1. Potential temperature (red line), salinity (blue line) and potential density (black line) from a horizontal SeaSoar
tow at 50 m in Subtropical North Pacific, at 140 degrees west, between 28 and 30 degrees north. This depth is in the middle
of the local mixed layer. The vertical axis for temperature and salinity are scaled by the respective expansion coefficients so
that excursions of temperature and salinity show the change they imply on density.

Here 6 and ii are the averaged velocity and averaged form of a down-gradient Fickian diffusion:
tracer concentration and 0' and u' are departures from
those averages. F represents the flux of tracer induced u'0' = kVH0, (5)
by the boundary conditions at the top and bottom of
the ML. The notation VH is used to remind that deriva- This kind of closure is commonly applied to ML models
tives are taken only in the horizontal, because the av- and the two relevant scalars (temperature and salinity)
eraged quantities do not depend on the vertical coor- are diffused with the same eddy diffusion coefficient,
dinate. In order to simplify the discussion, we assume and are independent from each other.
that H is a constant independent of position (for more However in the ML there are lateral inhomogeneities
on this point see Young, 1994; Garrett and Tandon, in the buoyancy2 field at scales larger than H. Hor-
1997). izontal buoyancy gradients slump under the action of

The next step is to express the first term on the gravity and drive horizontal eddy fluxes. Therefore we

RHS (called "eddy flux divergence") in terms of aver- expect the transport of tracer to be in the direction of

aged quantities. Mixing-length theories are a common and to increase with VHB. This breaks the assump-
way to achieve this goal. The argument goes that a tions of homogeneity and isotropy. Therefore a down-

fluid particle carries the value of a conserved, and hence gradient Fickian diffusion cannot be used to model the
transferable, tracer for some length 1', before it is mixed ML at scales larger then H. A more appropriate ex-
with its new surroundings. We give a vectorial nature pression for the diffusivity tensor is,
to 1' to allow for situations which are not isotropic. If
the particle has a concentration of scalar typical of its

surroundings then the eddy flux of tracer 0 is given by where -y is a constant and f(IVHBjI) a non-dimensional
function whose form depends on the details of the

WO' = -u .- VH 6, (4) hydrodynamic instabilities that dominate in the eddy
where it is assumed that VH# varies little over distances field. The expression (6) is rationalized as follows. Ac-
comparable with the mixing length 1'. The tensor u1l cording to mixing-length theories, the diffusivity tensor
defines the eddy diffusivity.dInes the speddyl difsivinty. s 2Buoyancy B is defined as p = po [1 - g-lB], where p is

In the special case when the statistics of the velocity the fluid's density, Po is a constant reference density and 9 is the
field are homogeneous and isotropic, the eddy diffusivity acceleration of gravity. With this definition, B has the dimensions
tensor is a constant, and the eddy transport assumes the of acceleration.
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can be expressed in terms of the characteristic velocity where YFB = PT - FS and Fv = FT + _FS. We can
Veddy and length Ueddy of the transfer process, that is now see how the equations in (11) and (12) model the
u'1' oc Ueddy leddy. In our case the length scale is given development of compensation in the ML. The prod-
by leddy = Ueddy Tv, where TV is the time for which uct f (IVBI) (VB VB) must be an increasing func-
the slumping process acts, before it is arrested by the tion of IVBI to be consistent with our assumption that
turbulent fluxes that mix vertically the ML. The eddy eddy fluxes are driven by buoyancy gradients. Under
velocity is in the direction of VHB with a magnitude this constraint, the nonlinear diffusion always dissipates
proportional to IVH!BI. Thus we get the expression in buoyancy, even more so when IVBI is large. Also spice
(6), where the tensor VHB3 VHB arises from the direc- is dissipated where IVB! is large. However large val-
tion of the eddy velocity field and -Yf(IVHBI[) is a pos- ues of IVVI can survive in regions where IVBi is small.
itive semidefinite term that determines the magnitude In terms of temperature and salinity this means that
of the flux. Notice that both the unbalanced motions at compensated fronts, for which VT ; VS persist, while
scales larger than H and the turbulent fluxes at scales buoyancy fronts are short lived.
shorter than H enter in the closure in 6. That is the Young (1994) and Ferrari and Young (1997) derive
processes of slumping and mixing act in parallel. formally equations of the form of those in (8) and (9)

Plugging (6) into (4) gives the eddy tracer flux, to parameterize the transport of heat and salt on hori-
St/ - 7) zontal scales of a few kilometers in the ML. These theo-

U'---'7 = -Tf(iVHBI) ~VHB. VH) VHB. (7) retical works are examples of the closures we have been

Notice that, even though the flux is in the direction of discussing when the averaging is done over the depth of

VB, u'0' • VO < 0. Thus the flux of tracer tends to the ML, over horizontal scales of a few kilometers and

be down the tracer gradient, but only the projection of time scales of a few hours. Nonlinear diffusion arises

the tracer gradient along the direction of the buoyancy because the horizontal transport of heat and salt is by

gradient contributes to the flux. shear dispersion, and the shear flow doing the disper-

We now apply the closure in (7) to the advection- sion is driven by slumping horizontal buoyancy gradi-

diffusion equations for heat and salt in the ML, ents. The strength of the shear dispersion increases
as the horizontal buoyancy gradient squared, that is

9tT + u.VT= f(IVBS) = 1 in (8) and (9).

= 7V. [f (I VB1) (VB VT)VB] + FT, (8) At scales larger than the Rossby radius of deforma-

,9tS + u. VS = tion Ro, unbalanced motions are influenced by rotation

rui -[fInt,9 in the form of baroclinic instability. Therefore, if one
= YV" [f(uvB])(S. VS)jvB + Fvs, (9) is to parameterize the transport of heat and salt on

where FT and Fs represent the thermohaline fluxes horizontal scales larger than Ro, say 10 km for a typi-

from the top and bottom of the ML. We dropped over- cal ML, the closure must include the transports due to

bars and we replaced VH with V for convenience, but eddies generated at barocinically unstable gradients.
keep in mind that all variables are averaged over scales Green (1970) and Stone (1972) derived expressions for

larger than H and times longer than i'v and that deriva- the tracer fluxes generated by baroclinic waves. Their
tives are taken only in the horizontal. We assume a lin- results predict that the baroclinic eddy fluxes across

ear equation of state and measure T and S in buoyancy a buoyancy gradient are proportional to the absolute
units units, so that, value of the diapycnal buoyancy gradient. Green and

Stone considered only zonally-averaged models and did
B = T - S. (10) not investigate the direction of the fluxes. If their ar-

The nonlinear advection-diffusion equations (8) and (9), guments are extended to two horizontal dimensions to

together with (10), form a closed system whose solution parameterize diapycnal fluxes of heat and salt in the

is fully determined once the forcings FT and Ys and the ML, one obtains nonlinear diffusion equations of the

large scale velocity field u are prescribed. form in (8) and (9) with f(IVB1) = IVBI-'. Notice,
lg scad oing fd subtracting prscrid(9), weobtai however, that a full parameterization of baroclinic in-
By adding and subtracting (8) and (9), we obtain stability should include the eddy fluxes along isopycnals

closed equatios fuoyancy and1), se Vas well (Marshall and Shutts, 1981). This issue is not
( Veronis, 1972; Munk, 1981), viz., pursued further here, because we focus on the role of di-

OtB + u.VB= apycnal fluxes on the establishment of the temperature-

= Y. [f(IVBI)(VB. VB)VB]+ 9v,(1l) salinity relationship in the ML.

tV + u.VV= (VChris Garrett, during the meeting, suggested that

= YVV [f(VB1) (VV VB)VB] + Fv, (12) symmetric instability might also drive thermohaline
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fluxes in the ML. Haine and Marshall (1997) used nu- 50
merical simulations to study what hydrodynamical in-
stabilities control the transfer of buoyancy through the
ML on scales of some tens of kilometers. Their conclu- 40 ALI 1

sion is that nonhydrostatic baroclinic instability pro-
vides the dominant mode of lateral buoyancy transfer. ' 30.
However symmetric instability plays an important role -0 0

during the slumping process by setting to zero potential >20

vorticity along isopycnal surfaces. Clearly more work 0
need to be done to formulate a closure that takes into f, 7 >

account the effects of both symmetric and baroclinic 10

instabilities.

3. Thermohaline alignment and 0 10 20 30 40 50

compensation in the mixed layer x [ki]

The nonlinear advection-diffusion equations in (8) Figure 2. Snapshot of the vorticity field obtained by in-
and (9) are now used to investigate how compensation tegrating the equivalent barotropic equations. The typical
andp(9)eare nowheML. usetose i tiate spsize of vortices is about 3 kin, that is half the wavelength of
appears in the ML. Suppose that spatial variations in 6kmawhctevoiiyeqtonsfred

temperature and salinity are created by surface fluxes

that vary on large horizontal scales. Mesoscale stirring
will create small-scale temperature and salinity gradi- scales small scales, regardless of the details of the stir-
ents by stretching and folding the large scale thermo- ring field and, in this context, the model in 13 suffices.
haline patterns. Large density gradients will disappear The temperature and salinity equations in (8) and
quickly as a result of nonlinear diffusion, while com- (9) are integrated with f(IVBI) = 1, that is we use the
pensated gradients will persist for longer times. Thus closure in Young (1994) and Ferrari and Young (1997).
we expect that the temperature and salinity gradients The value of -y is set to 1014 m2s 3 appropriate for typical
present at small scales at any particular moment will be ML parameters (details in Ferrari and Young, 1997).
typically compensated. We are now going to test this However the qualitative results discussed in the rest of
scenario with a numerical model. this paper do not depend on the particular choice of

3.1. Numerical model f(IVBI).
Temperature and salinity are forced with orthogonal

The parameterization in (8) and (9) is tested with nu- sinusoidal patterns, that is we set .TT = F0 cos qx in the
merical simulations in which temperature and salinity RHS of (8) and TFs = F0 sin qy in the RHS of (9). The
are advected using a velocity field generated by solving sinusoids have a wavelength equal to the domain size,
the equivalent barotropic equations in the streamfunction- i.e., q = 27r/51.2 km- 1 . The amplitude F0 is chosen
vorticity formulation,. such as to have thermohaline fluctuations of 1°C and

0.35 psu, at the scale of the domain. These forcings do
1t9 + J(0, ) = -/P + VV + J, (13) not to impose any correlation between temperature and

salinity fluctuations. Further details on the numerical
where 0 is the streamfunction, 4 - V24 the relative code are given in Ferrari and Paparella (2001).
vorticity and J the Jacobian operator. The forcing .F( is
applied in spectral space at a scale of 6 km with constant 3.2. Complex density ratio
amplitude and random phases. The bottom drag coef-
ficient is set to u = 3. 10-6 s-1 and the hyper-viscosity It is common to quantify compensation in terms of
to v = 3 . 106 m6 s-1. The result is a two-dimensional the density ratio, defined as the change in buoyancy due
turbulent field with meandering vortices of a diameter to temperature divided by the change in buoyancy due
of approximately 3 km (half the forcing scale) and RMS to salinity,
velocities of 0.1 m s- 1 (Figure 2). The domain of inte- R . VT
gration is a biperiodic square of 51.2 x 51.2 km 2 with a RID V- vS, (14)
mesh of 100 m. This is a poor model of the mesoscale
dynamics of the ML. In particular we are neglecting where temperature and salinity are defined in buoyancy

feedbacks between the buoyancy and the velocity fields. units, and £ is the direction along which the cut is taken.

But our goal is to show that compensation develops at In two-dimensions, it is convenient to introduce a
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complex density ratio as, two fields are remarkably different. A comparison of the
black contours in the two figures shows that gradients

R =T_ + i Tu (15) of spice are sharper than those of buoyancy: buoyancy
Sx + i Sy" contours are evenly spaced, while spice contours are ex-

tremely packed in a few regions and widely spaced in
The complex density ratio has both a magnitude and a others. Sharp spice gradients with no signature in buoy-
phase, R = JRI exp(iq): JR is the ratio of the magni- ancy imply VT ; VS, i.e., thermohaline compensation.
tudes of the temperature and salinity gradients and 0 The small scale variability in Figures 3 and 4 is
is the angle between them. If the gradients are parallel
(0 = 00) or antiparallel (0 = 1800), there is thermoha- produced by stirring the large scale thermohaline pat-
line alignment and the definition of R in the complex terns. The temperature and salinity gradients, cor-
plane is equivalent to that in (14) regardless of the ori- puted across the grid spacing of 100 m, are typicallyaligned. Alignment occurs because the isolines ofT

entation of £. When JRI > 1, the change in buoyancy and S are stretched by the same stirring field and thus
due to temperature is greater than the change in buoy- both tracers end up with gradients pointing in the same

ancy due to salinity along the direction of VB, that dire rs (Hup with is pointingh the same

is IVB • VTJ > IVB - VSI and the buoyancy-front is directions (Hua, 2001). This is shown through the joint

temperature-dominated. The opposite is true if JR1 < 1 pdf P(Tu, 0) (Figure 5). The overwhelming majority of
and the buoyancy-front is salinity-dominated. The par- points in the pdf have angles very close to either 0 = 00
ticular case b Ru = 1 and c = 0s describes thermohaline or 0 = 1800. But this is not the whole story, because
tculpenar ion. cnot all values of JRI are equally probable along those

two angles. The pdf has a clear peak at R = 1. This
Because the magnitude of the complex density ratio is the signature of nonlinear diffusion which selectively

is infinite when the salinity gradient vanishes, we char- dissipates all gradients whose density ratio is different
acterize fronts in terms of the phase 0 and the Turner from one and establishes compensation. Stirring alone
angle, does not produce a single peak in the pdf, because it

Tu =_ arctan JRI, (16) acts only on the relative orientation of VT and VS but

choosing the branch where 0 < Tu < ir/2. All statistics not on the ratio of their magnitudes. This was checked
will be computed in terms of €~ and Tu. For convenience, by running a simulation in which the nonlinear diffusion

results are discussed in terms of 0 and JRI, because their was set to zero. In this limit, the pdf P(Tu, 0) is indeed

values are more familiar. collapsed along the angles 0 = 00 and 0 = 1800, but it

In the following we use the joint pdf P(Tu, 0) to de- does not have a single mode.

scribe the degree of alignment and compensation in the Compensation is not maintained always and every-

ML. The joint pdf is normalized according to where in the domain. There are regions, in Figures 3
and 4, where buoyancy and spice gradients are compa-

j7T/2 d 27r rable. This happens when the stirring field momentarily
dTu0 de P(Tu, €) = 1. (17) creates large buoyancy gradients at small scales. These

dO' gradients do not persist for long, though, because non-

3.3. Results of numerical simulations linear diffusion restores compensation in a few hours.
At any time, a one dimensional cut through the do-

For the simulations we use kilometers to measure dis- main shows many compensated fronts and some rare
tances and hours to measure time. Therefore vorticity buoyancy fronts. This result agrees with the thermo-
is given in h-1 and buoyancy in km h- 2 . We set to zero haline structure found by Ferrari and Rudnick (2000)
the initial vorticity, temperature and salinity. After an in the ML of the Subtropical North Pacific (Figure 1),
initial transient of several eddy turnover times, kinetic where almost all temperature and salinity fluctuations
energy, enstrophy, temperature and salinity variances are compensated.
settle to a constant value; i.e. the system reaches an
equilibrium between the variance input by the forcing 4. Implications for numerical models of
at large scales and dissipation at small scales. the mixed layer

In Figures 3 and 4, we show snapshots of spice and
buoyancy 700 h after the beginning of the simulation. In the previous sections we have suggested that the
It is difficult to recognize in these snapshots the large thermohaline compensation observed in the ML is con-
scale patterns of buoyancy and spice imposed by the sistent with preferential diffusion of horizontal buoy-
forcing described in section 3.1. But the sinusoidal pat- ancy gradients. The theoretical argument implicates
terns emerge clearly if one averages the fields over times vertically sheared currents within the ML as the agent
of the order of a few hundred hours. At small scales the which produces the preferential horizontal transport of
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Figure 5. Joint pdf P (Tu, 0) of the complex density ratio R

Figure 3. Snapshots of spice at the same time of figures 2 defined in section 3.2. The azimuthal position in the radar
and 4. The colored pattern hints at the large-scale sinu- plot indicates the angle between the temperature and the
soidal checkerboard, imposed on the spice field through the salinity gradients, while the radial displacement is the ratio
thermohaline forcing. of their magnitudes. The pdf is an average over 200 hours

during which the simulation was in equilibrium. Nearly all
points lie along the line of alignment, that is at angles € = G'
and 0 = 1800. The maximum of the pdf is at R = 1 and
shows that thermohaline fronts are typically compensated.

density. Numerical models with bulk MLs do not in-
50 clude this physics. The purpose of this last section is

to suggest a simple parameterization of ML horizon-
CV tal transports that might improve the representation of

50-5 thermohaline dynamics in numerical models with bulk
f:: ML.

S30 "" Bulk ML parameterizations ignore the potential en-
. ergy stored in horizontal buoyancy gradients. But we

>'20 CU contend that the release of this potential energy plays
>- an important role in establishing compensation. The

i0 -5 system in (11) and (12) describes the horizontal dynam-
S ics of the vertically-averaged fields and could be imple-

0 mented in a bulk ML model. However the nonlinear

0 10 20 30 40 50 diffusive terms on the RHS of (11) and (12) are difficult
x [km] to integrate numerically. In small regions with large

buoyancy gradients the diffusive constraint on the time

stepping becomes severe (Ferrari and Paparella, 2001)
Figure 4. Snapshots of buoyancy at the same time of and the whole calculation proceeds very slowly. The
figures 2 and 3. The colored pattern hints at the large- path we follow here is to derive a substitute model that

scale sinusoidal checkerboard, imposed on the buoyancy field

through the thermohaline forcing. At small scales buoy- retains the basic physics of (11) and (12), but that is

ancy shows less structure and milder gradients than spice. easy to integrate numerically. That is we write a linear

Regions with large spice fluctuations with no signature in model that diffuses horizontal buoyancy gradients more

buoyancy are the trademark of compensation. efficiently than spice gradients in the following way,

Bt+u.VB = KBV2B, (18)

Vt+u.VV = r.vV 2V. (19)
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By setting KB >> 'Y buoyancy gradients decay faster R

than spice gradients. The main advantage of the model 1.5 1 0 1 2

a) 1.5
in (18) and (19) over that in (11) and (12) is that the 0) Observations

diffusivities are independent of the buoyancy gradients <

and therefore the diffusive constraints on the time step-E
ping do not grow unbounded.

In order to match observations, the two diffusivi- u_0.5
ties KB and Kv must be chosen such that compensa-

tion happens mostly at scales below 10 km (Ferrari and -°~/2 -n/4 0 7r/4 7/2

Rudnick, 2000). That is the dissipation cutoff scale for
buoyancy must be of the order of 10 km, while the dis- -.. 1 0 1 2

sipation cutoff scale for spice must be smaller. The . 1.5 ...... te.....ionSParameterization
dissipation cutoff scale for buoyancy can be estimated
as, a 1i

I-

KtB "6 0.5
Ldiss - (20) _

IL 0 "

-ir/2 -n/4 0 7/4 7E/2
where a is the RMS strain rate of to the mesoscale eddy Tu=atan(R)

field u. A reasonable strain rate in the ML is of the or-
der of 10-5 s-1. By imposing Ldi,, ;, 10 kin, it follows Figure 6. Probability density function of the horizontal

that K-B ; 103 m 2 s-1. The choice of Kv is somewhat mixed-layer Turner angle across a distance of 3 km along

arbitrary, but it should be a couple of orders of magni- 25-35 degrees in the North Pacific (upper panel) and across

tude smaller than KB, so that there is at least a decade the same distance in a simulation with the proposed mixed

between the cutoff scales of spice and buoyancy. layer parameterization (lower panel). The values of Turner
angle and density ratio are indicated on the upper and lower

The final step is to write the linear model in (18) and axes. The pdfs have a peak close to R = 1 and represent

(19) in terms of temperature and salinity, by using once thermohaline fields characterized by buoyancy compensa-
more the linear expressions for buoyancy B = T- S and tion.
spice V = T + S,

5. Conclusions
T + u. VT = •+V2 T- K_V2S, (21)
St + u. VS = K+V2 S- KV 2 T, (21) We have shown that the ubiquitous compensation

.+_-V2T, (22) of thermohaline gradients observed in the ML is consis-

tent with the theoretical arguments of Young (1994) and
where K+ = (KB + KV)/2 and K_ = (KB - nv)/2. The Ferrari and Young (1997). Compensation can be ex-

coupling between the salt and heat fluxes in (21) and plained as the preferential diffusion of horizontal buoy-
(22) is formally similar to the Soret and DuFour effects ancy gradients which occurs because unbalanced motion

that operate on a molecular level (Caldwell, 1973). The due to these gradients is stronger in the ML than in the
main difference is that, in the present case, all terms more nearly geostrophic interior. The horizontal pres-

in the RHS of (21) and (22) are of the same order and sure gradients associated with the buoyancy gradients

none can be neglected. Only for KB = KY, the coupling produce "exchange flows" which act to restratify the

between temperature and salinity disappears. ML in the vertical. The turbulent fluxes, that contin-

The parameterization in (21) and (22) has been uously mix the ML in the vertical, oppose the restrati-

tested by integrating the equations with the velocity fication and weaken the horizontal buoyancy gradients.

field and thermohaline forcings described in section 3.1. This process is essentially shear dispersion of buoyancy,

The lower panel of Figure 6 shows the pdf of the merid- where the shear flow is driven by the density gradients

ional density ratio at a scale of 3 km obtained with the themselves.

linear model. The pdf has a clear peak at R = 1, as The theoretical arguments of Young and collabora-

in the observations (upper panel of Figure 6). Notice tors implicate that eddy fluxes of heat and salt in the

that the large scale density ratio for the same simula- ML are in the direction of the buoyancy gradients and

tion is uniform. Thus compensation is a result of the act to weaken the horizontal buoyancy stratification.
parameterization in (21) and (22), and is not due to the That is, the thermohaline diapycnal fluxes remove the

external forcing. energy stored in horizontal buoyancy gradients. The sit-
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